Hyperbolic Functions Table
Hyperbolic functions are similar to the trigonometric functions (or circular functions) except that the points form the right half of the equilateral hyperbola instead of forming a circle.
Inverse hyperbolic cosine |
LOG(w + SQR(w ^ 2 - 1)) |
ARCCOSH(w) |
w =Numeric where w must be >= 1 |
Inverse hyperbolic cotangent |
LOG((w + 1) / (w - 1)) / 2 |
ARCCOTH(w) |
w =Numeric where w must be > 1 or < -1 |
Inverse hyperbolic cosecant |
LOG((1 + SQR(w ^ 2 + 1)) / w) |
ARCCSCH(w) |
w =Numeric where w <> 0 |
Inverse hyperbolic secant |
LOG((1 + SQR(1 - w ^ 2)) / w) |
ARCSECH(w) |
w =Numeric where w must be > 0 and <= 1 |
Inverse hyperbolic sine |
LOG(w + SQR(w ^ 2 + 1)) |
ARCSINH(w) |
w =Numeric |
Inverse hyperbolic tangent |
LOG((1 + w) / (1 - w)) / 2 |
ARCTANH(w) |
w =Numeric where w must be > -1 and < 1 |
Hyperbolic Cotangent |
(e ^ w + e ^ -w) / (e ^ w - e ^ -w) |
COTH(w) |
w =Numeric where w <> 0 |
Hyperbolic Cosecant |
2 / (e ^ w - e ^ -w) |
CSCH(w) |
w =Numeric where w <> 0 |
Hyperbolic Secant |
2 / (e ^ w + e ^ -w) |
SECH(w) |
w =Numeric |
Hyperbolic Sine |
(e ^ w - e ^ -w) / 2 |
SINH(w) |
w =Numeric |
Hyperbolic Tangent |
(e ^ w - e ^ -w) / (e ^ w + e ^ -w) |
TANH(w) |
w =Numeric |