# Hyperbolic Functions Table

Hyperbolic functions are similar to the trigonometric functions (or circular functions) except that the points form the right half of the equilateral hyperbola instead of forming a circle.

 Inverse hyperbolic cosine `LOG(w + SQR(w ^ 2 - 1))` `ARCCOSH(w)` `w`=Numeric where `w` must be >= 1 Inverse hyperbolic cotangent `LOG((w + 1) / (w - 1)) / 2` `ARCCOTH(w)` `w`=Numeric where `w` must be > 1 or < -1 Inverse hyperbolic cosecant `LOG((1 + SQR(w ^ 2 + 1)) / w)` `ARCCSCH(w)` `w`=Numeric where `w` <> 0 Inverse hyperbolic secant `LOG((1 + SQR(1 - w ^ 2)) / w)` `ARCSECH(w)` `w`=Numeric where `w` must be > 0 and <= 1 Inverse hyperbolic sine `LOG(w + SQR(w ^ 2 + 1))` `ARCSINH(w)` `w`=Numeric Inverse hyperbolic tangent `LOG((1 + w) / (1 - w)) / 2` `ARCTANH(w)` `w`=Numeric where `w` must be > -1 and < 1 Hyperbolic Cotangent `(e ^ w + e ^ -w) / (e ^ w - e ^ -w)` `COTH(w)` `w`=Numeric where `w` <> 0 Hyperbolic Cosecant `2 / (e ^ w - e ^ -w)` `CSCH(w)` `w`=Numeric where `w` <> 0 Hyperbolic Secant `2 / (e ^ w + e ^ -w)` `SECH(w)` `w`=Numeric Hyperbolic Sine `(e ^ w - e ^ -w) / 2` `SINH(w)` `w`=Numeric Hyperbolic Tangent `(e ^ w - e ^ -w) / (e ^ w + e ^ -w)` `TANH(w)` `w`=Numeric