Hyperbolic Functions Table

Hyperbolic functions are similar to the trigonometric functions (or circular functions) except that the points form the right half of the equilateral hyperbola instead of forming a circle.

Inverse hyperbolic cosine
LOG(w + SQR(w ^ 2 - 1))
ARCCOSH(w)
w=Numeric where w must be >= 1
Inverse hyperbolic cotangent
LOG((w + 1) / (w - 1)) / 2
ARCCOTH(w)
w=Numeric where w must be > 1 or < -1
Inverse hyperbolic cosecant
LOG((1 + SQR(w ^ 2 + 1)) / w)
ARCCSCH(w)
w=Numeric where w <> 0
Inverse hyperbolic secant
LOG((1 + SQR(1 - w ^ 2)) / w)
ARCSECH(w)
w=Numeric where w must be > 0 and <= 1
Inverse hyperbolic sine
LOG(w + SQR(w ^ 2 + 1))
ARCSINH(w)
w=Numeric
Inverse hyperbolic tangent
LOG((1 + w) / (1 - w)) / 2
ARCTANH(w)
w=Numeric where w must be > -1 and < 1
Hyperbolic Cotangent (e ^ w + e ^ -w) / (e ^ w - e ^ -w)
COTH(w)
w=Numeric where w <> 0
Hyperbolic Cosecant 2 / (e ^ w - e ^ -w)
CSCH(w)
w=Numeric where w <> 0
Hyperbolic Secant
2 / (e ^ w + e ^ -w)
SECH(w)
w=Numeric
Hyperbolic Sine (e ^ w - e ^ -w) / 2
SINH(w)
w=Numeric
Hyperbolic Tangent (e ^ w - e ^ -w) / (e ^ w + e ^ -w)
TANH(w)
w=Numeric